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The human gut environment can contain hundreds to thousands bacterial species which
are proven that they are associated with various diseases. Although Machine learning has
been supporting and developing metagenomic researches to obtain great achievements in
personalized medicine approaches to improve human health, we still face overfitting issues
in Bioinformatics tasks related to metagenomic data classification where the performance in
the training phase is rather high while we get low performance in testing. In this study, we
present discretization methods on metagenomic data which include Microbial Compositions
to obtain better results in disease prediction tasks. Data types used in the experiments consist
of species abundance and read counts on various taxonomic ranks such as Genus, Family,
Order, etc. The proposed data discretization approaches for metagenomic data in this work
are unsupervised binning approaches including binning with equal width bins, considering
the frequency of values and data distribution. The prediction results with the proposed
methods on eight datasets with more than 2000 samples related to different diseases such
as liver cirrhosis, colorectal cancer, Inflammatory bowel disease, obesity, type 2 diabetes
and HIV reveal potential improvements on classification performances of classic machine
learning as well as deep learning algorithms. These binning approaches are expected to be
promising pre-processing techniques on various data domains to improve the performance
of prediction tasks in metagenomics.

1 Introduction
This paper is an extension of work originally presented in The
11th IEEE International Conference on Knowledge and Systems
Engineering (KSE) 2019 in Da Nang, Vietnam [1].

Recent years, the field of health care has been receiving great
attention from the world. Many services and high-tech applied
equipment are manufactured for medical use. Medical results re-
quire high accuracy and meet a wide range of diseases, so it is
necessary to deploy diagnostic methods and treatments with new
technologies. Also, dangerous diseases such as Liver Cirrhosis,
Colorectal, HIV, etc. have an increasing rate due to lifestyle, way
of life, diet. Liver Cirrhosis is a disease of concern due to the in-
creasing trend each year. The main cause of cirrhosis is the living
environment, using a lot of alcohol, toxic chemicals. The level
and duration of consumption is an important determinant of the

development of liver pathology. In 2015, cirrhosis was the 12th
leading cause of death in the United States, with a total of 42,443
deaths 2,494 compared to 2014 [2]. Colorectal cancer is the third
most common disease in the United States. The main object of
the disease is elderly but the proportion of young people with the
disease tends to increase. According to statistics in early 2020, an
estimated 53,200 deaths (28,630 males and 24,570 females) are due
to the disease, but there is an increased incidence in young people.
Although the incidence decreases by 3.6% per year from 2007 to
2016 in adults 55 years and older, they increase 2% per year in
adults under 55 years. This year, colorectal cancer is estimated to
be the fourth most commonly diagnosed cancer in the United States
for men and women aged 30 to 39 [3]. Heart failure is a common
complication of Cardiometabolic diseases (CMD). When the pump-
ing action of the heart weakens, the amount of blood pumped out
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is insufficient for the body to make it difficult for the person to feel
short of breath, or chest pain, which is called heart failure. Genetic
diversity has not been considered in the diagnosis and prognosis of
the disease. We apply a single method of treatment to all patients
with a similar diagnosis. The results showed that some patients’
health did not improve, and the rest gradually recovered. This shows
that many methods need to be applied for an effective treatment
for each patient. Advances in data processing technology make us
understand the importance of metagenomic to human health and
explore the diversity of genetics. Deep learning has provided many
algorithms to help scientists propose models, methods of diagnosis
and treatment.

Modern techniques in healthcare are still developing at a great
speed. One of them is Personalized Medicine which defines the
impact goals that will work for a patient based on the patient’s en-
vironmental factors, genes, etc. and is used on a group of patients.
Today, scientists have studied numerous methods for Personalized
Medicine and metagenomic is one of them. As we have known,
metagenomics is a method of sequencing and analyzing the DNA of
microorganisms collected from the environment without culturing
them. We are looking at the human gut environment. Bacteria
are often very diverse, they are classified into seven basic types:
domain, kingdom, phylum, class, order, family, genus, and species.
This diversity helps to provide more information about diseases to
support more effective diagnosis and prognosis. The diseases under
consideration are complex and we only have a limited number of
observation data samples, so the prediction tasks are produced in
inconsistent results with comparable diseases.

To test and propose models for healthcare services, Machine
learning algorithms have been strongly researched and developed
to solve metagenomics-related problems , mainly prediction genes
[4, 5], Operational Taxonomic Unit clustering [6–9], comparative
metagenomics [10–13], binning, taxonomic profiling and assign-
ment [14]. All of the issues mentioned are given in [14].

The authors presented the basic principles of machine learning
in [15] and a typical pipeline was introduced [16, 17]. This model
is clustered or classified based on pre-processed results and feature
extraction. A machine learning program consists of three basic
components, such as data (or experience), task (formed by the out-
put of the algorithm) and target (possibly in the form of measuring
the efficiency of the output). MetAML was introduced in [17] by
Edoardo et al. which is a computational framework that learns about
the presence of specific species signs and the relative abundance of
species, these two collectively called are quantitative microbiome
configurations. Using machine learning to independently evaluate
the accuracy of models on large metagenomic datasets, thereby
analyzing and comparing the practical microbiome usage strate-
gies that were recommended in [18]. With the task of classifying
metagenomics, Ph-CNN [19] was introduced to the OTU hierar-
chical structure and it was also compared to other technologies
in machine learning such as random forests. PopPhy-CNN [20]
is introduced by D. Reiman et al. PopPhy-CNN is deep learning
framework, using embedded information based on a phylogenetic
tree to predict diseases from metagenomic data. PopPhy-CNN has
superior performance compared to random forests, support vector
machines, LASSO and the basic 1D-CNN model built with bacte-
rial vectors. In addition to retrieving information microbiological

classifications from trained CNN models, PopPhy-CNN also vi-
sualizes phylogenetic tree classifications. Several deep learning
algorithms have been evaluated as a feasible approach to speed
up DNA sequencing [21]. To identify viruses by deep learning
with metagenomic data, J. Ren et al. [22] proposed using DeepVir
Downloader (a reference-free and alignment-free machine learn-
ing method) to improve accuracy and support virus research. We
will present 1D representations through packaging and expansion
methods, and demonstrate the effectiveness of applying Multi-layer
Perceptron (MLP), traditional artificial neural networks to perform
predictive tasks.

In the study [23], the authors presented the MSC algorithm with
the goal of classification to detect the circulating rate and estimate
their relative level. MSC is a metagenomic sequence classification
algorithm that has accuracy, memory and runtime and gives an
approximate estimate of abundance over other algorithms. Jolanta
Kawulok [24] presented research on the environmental classification
of metagenomic data to build a microbiome fingerprint. Another
study by Lo Chieh et al. [25] proposed the MetaNN model, this is
a model of host phenotypes classification from metagenomic data
using neural networks. The results show that MetaNN is superior
to the exact classification team for synthetic and real metagenomic
data compared to other models, contributing to the development of
microbiome-related disease treatments.

In this research, we have investigated and implemented a va-
riety of binning methods to improve predictive performance. We
have proposed different binning methods including binning based
on frequency, width, the proposed breaks and combination between
scaler and binning. After applying binning approaches, the data are
fetched into machine learning algorithms including both classical
machine learning and deep learning. We present the results which
are produced with more running times in [1] for deeper comparison
and include p-values for finding significant results. Additionally,
we include another dataset, Crohn disease, in the experiments, for
a complete comparison with the state-of-the-art. The results of [1]
run by only MultiLayer Perceptron, we extend to run with a variety
of machine learning algorithms including classical algorithms such
as Random Forest, Linear Regression and deep learning (Convolu-
tional Neural Network (CNN)) technique. The number of bins also
carried out to consider in this work for choosing the number of bins
for metagenomic data binning approaches. The work is expected to
provide robust pre-processing methods to enhance the performance
of machine learning algorithms applying to metagenomic data. Re-
sults, datasets and scripts for the experiments are uploaded to the
public GitHub repository. To sum up, the contributions of this work
include:

• The study presents various binning methods. The width of
all bins can be equal or the width of each bin is conducted
from the frequency of values. We also consider binary bins to
determine whether the feature exists in the considered sample
or not. The proposed methods as shown results can improve
the performance comparing the original data.

• A combination of scaler algorithms and binning methods is
also introduced for the comparison. Some scalers such as log-
arithm calculations and quantile transformation reveal good
performance on some datasets.
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• Methods are evaluated by disease prediction tasks on a variety
of diseases including liver cirrhosis, colorectal cancer, IBD,
obesity, HIV, Type 2 diabetes. Considered data types include
species abundance and counts at other taxonomic ranks such
as genus, family, etc.

• Several machine learning techniques including both classic
machine learning and deep learning are investigated with
Classification tasks on metagenomic data.

• The proposed framework, namely Metagenomic-To-Bins
(Met2Bin), including scripts, results and datasets is published
at https://github.com/thnguyencit/met2bin.

In the next sections of the paper, we describe 8 metagenomic
datasets used in the experiments including the total number of fea-
tures, the total number of samples, both the number of disease and
non-disease (Section 2). In Section 3, we introduce the metagenomic
data binning with various approaches along with scaler algorithms.
Section 4 describes the empirical results and Section 5 provides
insightful remarks of the study.

2 Metagenomic data benchmarks
To evaluate the performance of classifiers, we run the prediction
tasks on a variety of datasets (8 metagenomic datasets) including
species abundance datasets and read counts related to different
specific diseases, such as Liver cirrhosis (CIR), colorectal cancer
(COL), Crohn’s disease, Human Immunodeficiency Virus (HIV)
infection, Inflammatory Bowel Disease (IBD), Obesity (OBE), Type
2 Diabetes (T2D and T2W). Each dataset consists of 4 main param-
eters: (1) the number of features, (2) the number of samples, (3)
the number of samples affected by the disease, (4) the number of
healthy samples.

CIR dataset comprises 542 features with 232 samples including
118 patients and 114 healthy individuals. COL dataset consists of
121 individuals with 48 patients. The number of patients affected by
Crohn’s disease is 663 out of 975 people were considered. For HIV
dataset, the number of positive cases is 129 out of 155. IBD dataset
includes 253 samples of which 164 are affected by the disease, OBE
dataset consists of 174 non-obese and 170 obese individuals. T2D
and WT2 datasets include 344 samples and 96 samples, respectively.

The HIV, Crohn’s datasets contain 155 and 975 samples, re-
spectively, which have values greater than 1, evaluated using the
recommended method [26] with the number of reads for microbial
taxa at the levels which are higher than species. Crohn’s disease
is a type of inflammatory bowel disease (IBD). This disease can
affect any segment of the gastrointestinal tract from the mouth to
the anus. The features in two these datasets can be genus counts,
family counts, or order counts. We bring read counts datasets from
the analysis in [27] to compare to our method.

For species abundance datasets, each sample, species abundance
is a relative proportion and it is revealed as a real number that has
the total abundance of all species summing to 1 (The details are
shown in Table 1).

Let D be the set of considered datasets, D =

{d1, d2, d3, d4, d5, d6, d7, d8}, with d1 = CIR, d2 = COL, d3 = Crohn,
d4 = HIV, d5 = IBD, d6 = OBE, d7 = T2D, d8 = WT2, d = 1..8

Fi = { f1, f2, ..., fm} includes m features corresponding to di

S i = {s1, s2, ..., sn} includes n samples corresponding to di

Pi = {p1, p2, ..., pk} includes k patients who affected by diseases
corresponds to di

Ci = {c1, c2, ..., ck} includes x controls / healthy individuals that
correspond to di

Matrix(C) =



d1 F1 S 1 P1 C1
d2 F2 S 2 P2 C2
d3 F3 S 3 P3 C3
d4 F4 S 4 P4 C4
d5 F5 S 5 P5 C5
d6 F6 S 6 P6 C6
d7 F7 S 7 P7 C7
d8 F8 S 8 P8 C8



=



CIR 542 232 118 114
COL 503 121 48 73

Crohn 48 975 663 312
HIV 60 155 129 26
IBD 465 253 164 89
OBE 572 344 170 174
T2D 381 96 53 43
WT2 443 110 25 85


The read counts of each feature in HIV and Crohn datasets can

be greater than 1 while total species abundance of all features in one
sample of other species abundance datasets is sum up to 1:

k∑
i=1

fi = 1

With:

• k is the number of features for a sample.

• fi is the value of the i-th feature.

The next section, we will introduce pre-processing methods
based on binning approaches on these metagenomic datasets.

3 Metagenomic data binning
Data binning or Data Discretization is a data processing method
which transforms continuous value into discrete value. To discretize
continuous values into “bins”, we need to determine “breaks” where
indicates which bin these values belong to. “Breaks” are real values
which can be 0.1, 0.35, etc. that are considered as “boundaries”
of bins. Let say, we have an array of values including 0.000012,
0.02, 0.56, 0.92. We would like to divide 10 bins which own an
equal width for each bin on a considered value range from 0 to 1.
The width of each bin or interval width, in this case, is 1−0

10 = 0.1.
The value range of the first bin is from 0 to 0.1, the second bin is
from 0.1 to 0.2, etc. In our study, we do not consider the values
of 0 (zeros), so values which are greater than 0 and lower than 0.1
(such as values of 0.000012, 0.02) will belong to the first bin while
the second bin contains values which are greater than or equal to
0.1 and lower than 0.2. For other values with the computation as
above, 0.56 will belong to the 6th bin while the last bin (10th bin)
contains 0.92. The breaks as the example mentioned consist of 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. We also add 0 to the breaks to
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Table 1: Information on eight considered datasets.

CIR COL Crohn HIV OBE T2D WT2 IBD
#Features 542 503 48 60 465 572 381 443
#Samples 232 121 975 155 253 344 96 110
#Patients 118 48 663 129 164 170 53 25
#Controls 114 73 312 26 89 174 43 85

Figure 1: Data density with various binning methods on Liver Cirrhosis bacterial species abundance dataset using the same 10 bins. X-axis shows a value range of
abundance.

compare whether the values are greater than 0 to distribute values
to bins. Metagenomic data can exist outliers that cause many wrong
many prediction results by learning machine algorithms. Binning
approaches are expected to improve the performance by reducing
the effects of minor observation errors and to get rid of noise in the
data.

This section will present various binning approaches which
can be binning with equal width or equal frequency of values or
basing on species abundance distribution of several considered
species abundance datasets or simply only considering whether the
feature exists in the sample or not (value > 0), namely Binary
Binning. Some methods combining between binning approach and
transformation with scaler algorithms are also presented.

3.1 Equal Width binning

EQual Width binning (EQW) divides and delivers continuous val-
ues to bins which have equal width. Each bin has the equal width
which is computed by Max value−Min value

numbero f bin in the range of [Min, Max]
of the data. For instance, we would like to deliver original values to
5 equal width bins (k = 5) using a range of [Min=0,Max=1], then
width of each bin is 0.1 (w = 0.1). The interval boundaries include
Min + w,Min + 2 × w, ...,Min + (k − 1) × w. The idea is simple but
this method show improvements in prediction tasks.

3.2 EQual Frequency binning (EQF)

Equal frequency binning method cuts the data into n parts (bins)
which each part contains approximately the same number of values.

The breaks are identified using the training set so the performance
in the testing phase will be poor if the training set cannot reflect
exact general data distribution of the considered disease. Breaks
depend totally on data distribution so the width of each bin can vary
significantly.

3.3 Binning based on species abundance distribution

SPecies Bins (SPB) is extended from EQW combining
species abundance distribution conducted from 6 species abun-
dance datasets in [1]. Authors in [1] presented breaks
including 0, 10−7, 4 ∗ 10−7, 1.6 ∗ 10−6, 6.4 ∗ 10−06, 2.56 ∗
10−05, 0.0001024, 0.0004096, 0.0016384, 0.0065536 for Species
Bins. The first break ranges from 0 to 10−7 which is the small-
est value of species abundance known in six species abundance
datasets of CIR, COL, IBD, OBE, T2D, and WT2 [1]. The width of
each bin is equivalent to a 4-fold increase from the previous bin.

3.4 Equal Width binning combining scaler algorithms

Some transformation algorithms applying to original data can be use-
ful for binning. Standardization method is a widely-used technique
for numerous machine learning algorithms to resolve the problem
of different data distributions. Quantile Transformation (QTF),
MinMaxScaler (MMS), and logarithmic computations scalers are
considered to convert data before binning.

Quantile Transformation is implemented to combine with EQW
in these experiments. QTF is considered as a robust pre-processing
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technique because it can reduce the effect of the outliers. Samples
in test and validation sets which are smaller or larger than the fitted
range then will be assigned to the bounds of the output distribu-
tion. Another algorithm illustrated in this study is MinMaxScaler,
to make a comparison with QTF and logarithmic computations.
MinMaxScaler converts each feature to a given range by (1) and (2)
formulas:

Xstd =
X − X.min

X.max − X.min
(1)

Xscaled = Xstd ∗ (max − min) + min (2)

Functions which perform the transformation as above are now avail-
able in scikit-learn library.

As described in [1], metagenomic data usually follow the zero-
inflated distribution. Data scaled with the methods of transformation
based logarithm calculation reveal more normally-distributed. In
this study, we use logarithm computation base 4 and base 100 for
comparison.

3.5 Binary Bin

Binary Bin (B2) which can be considered as the one-hot encoding
method, also is brought to compare. B2 indicates whether a feature
is present or absent in a sample. If values are greater than 0, Bin
1 contains them. Otherwise, they are delivered to Bin 0 (with all
values=0).

3.6 Data distribution Visualization of binning methods
and scalers

Figure 2: Data density on Crohn Read Counts dataset. X-axis shows a value range of
counts with breaks using EQF and EQW on Min-Max range of training set.

Figure 1 shows various binning approaches on CIR dataset.
The breaks of EQF include 0, 4 ∗ 10−07, 2.47 ∗ 10−05, 6.2 ∗
10−05, 1.27∗10−04, 2.466∗10−04, 4.788∗10−04, 9.783∗10−04, 2.1484∗
10−03, 5.5149 ∗ 10−03. These breaks are approximate to SPB. We
note that some first bins (with EQF) own high density with the width
of these are rather small (4 ∗ 10−07 for the first bin) while the width
of the 9th bin is about 3.4 ∗ 10−03. Similar results are exhibited for
SPB. Width of each bin with EQW is equal, so we can see that the
first bin contains most of the data.

For data type of counts, the values in features can be greater
than 1, so SPB and EQW considering in a value range from 0 to
1 are not efficient for this type. EQW with a range between Min
and Max values in the training set and EQF can work in this situa-
tion (Figure 2). Observed and conducted from Figure 2 for EQW
method, we see that data distribution of metagenomic is the zero-
inflated distribution, no matter what data is abundance or counts.
However, a transformation with logarithm enables data to be more
normally-distributed (Figure 3).

Figure 3: Data density on Crohn Read Counts dataset after transformation with
logarithm base 4 and 100. The X-axis shows a transformed value range

The performance of the proposed binning methods will be eval-
uated in the next section (Section 4).

4 Experimental Results on Metagenomic
data binning Approaches

To exhibit the efficiency of binning approaches on various machine
learning algorithms, we present the results with a classic machine
learning algorithm (Random Forest), Linear Regression and a fa-
mous deep learning technique that is Convolutional Neural Network
on 1D data (CNN1D).

Figure 4: CNN1D architecture.

The algorithms of CNN1D, Linear Regression are both imple-
mented using Adam optimization function, a learning rate of 0.001,
and using an overall epoch of 500 along with a batch size of 16 and
binary cross-entropy loss function. To reduce overfitting issue, we
use ”Early Stopping” with the number of epoch patience of 5. The
learning will stop if the Loss is not improved after 5 consecutive
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epochs. As conducted from [1], we should use a shallow deep learn-
ing architecture instead of deeper architectures, so the proposed
CNN1D architecture includes a convolutional layer consisting of 64
filters of the size of 3, following by a max-pooling of size 2, and
an activation function of ReLU [28]. The details of CNN1D are
visualized in Figure 4.

Random Forests algorithm is a robust learning algorithm and
widely-used in numerous studies related to bioinformatics tasks. In
this study, Random Forest algorithm is deployed with 500 trees,
nodes are expanded until all leaves are pure or until all leaves con-
tain less than min samples split = 2 where min samples split is the
minimum number of samples required to split an internal node.

The performance of each classifier is measured by an average of
Area Under the Curve (AUC) and an average Accuracy (ACC) on
10-stratified-fold-cross validation repeated 5 times. The same folds
are used for all classifiers, i.e. training and test sets were identical
for each classifier. Besides, results are visualized by Boxplot to
exhibit graphically depicting groups of numerical data through their
quartiles. Our results are compared to state-of-the-arts including
MetAML [18] on 6 species abundance datasets and Selbal [27] on
2 read counts datasets. MetAML [18] is a framework for metage-
nomic data analysis running on species abundance with classic
machine learning algorithms such as SVM and Random Forest.
MetAML performed the best with Random Forest; hence in com-
parison with our methods, we also run the classification tasks using
Random Forest with the same parameters with MetAML. Selbal
uses balance score to find good features, then fetching the features
into Linear Regression algorithms for the prediction tasks.

We need to specify the value range to divide bins for binning
approaches. In this study, the considered value range can be either
[0,1] or [Min,Max] to divide bins for data. [Min,Max] means we
consider the range covered by the minimum value and the maximum
value of all features in the training set to bin the data.

We present the experimental results as followings. First, we
show the disease prediction performance of all considered binning
approaches (Section 4.1). Next, we evaluate and compare the differ-
ences in performance when we change the number of bins. Then,
promising methods are compared with the state-of-the-art including
MetAML [18] and Selbal [27].

4.1 Evaluation on different data pre-processing meth-
ods for metagenomic data

We compare the performance of various pre-processing methods
based on binning approaches with three different widely-used ma-
chine learning algorithms including Random Forests (Figure 5),
Convolutional Neural Network (Figure 6) and Linear Regression
(Figure 7).

Figure 5 shows the prediction performance of the considered
binning methods performed by Random Forests on 8 considered
datasets. We compare the efficiency of different binning approaches
(B2, EQF, EQW, SPB) and various scalers (Logarithms, Min-Max
Scaler, Quantile Transformation). Except for Crohn dataset, there
are not too significant differences in the performances of Random
Forests algorithm with different approaches. In the chart, NA (“Not
Available”) means the model running on the original data without
using binning, so the value range for binning is also NA (for exam-

ple, NA log4 NA, NA none NA, etc.). For CIR and OBE datasets,
EQF without using scaler achieves the best performance. The av-
erage AUC for predicting CIR, OBE datasets using EQF none are
0.95582, 0.68238, respectively. For samples from COL dataset, the
highest result is with QTF scaler. The datasets of Crohn’s disease,
HIV, IDB achieve the best results with EQW binning combined
with QTF scaler on the value range of [Min,Max]. The best AUC
for Crohn’s disease dataset is 0.86976 and IBD obtains the best
value at 0.88888 while HIV dataset obtains the best at 0.72438. The
remaining 2 datasets including T2D and T2W using the binning
method of EQW on the range of [Min,Max] without using scaler,
reach the AUC best at 0.76286 and 0.80868, respectively. Crohn
dataset shows worse results on the value range of [0,1]. It seems
more appropriate because this dataset uses read count where the
values are either equal 0 or greater than 1.

Figure 6 exhibits the results of CNN model on the considered
datasets. As seen from the figure, binning approaches can outper-
form other methods. CIR dataset has the highest AUC value of
0.95986 while IBD dataset owns the best AUC value of 0.90894.
Both two those results are evaluated with EQF without using any
scalers. COL dataset obtains the best results with using the EQW
combined Min-Max scaler on the value range of [Min,Max] of the
training sets with AUC of 0.83732. Crohn’s gets the best result
using QTF scaler with AUC of 0.85698. The prediction results
on HIV disease using EQF without scaler on the value range of
[Min,Max] peak at the best AUC value of 0.72788. OBE dataset has
the highest AUC when we use the SPB approach. Two datasets of
T2D, T2W running with EQW binning on the range of [0, 1] exhibit
the best AUCs of 0.75746, 0.80238, respectively.

We also present performances of Linear Regression algorithm in
Figure 7. As exhibited, the results are rather similar to mentioned
previous two algorithms. CIR dataset obtains the best AUC value
of 0.95870 with using EQF binning on the range of [0,1] while
we achieve the best AUC of 0.83990 on COL with EQW. Original
data of Crohn dataset being run by QTF scaler reaches the highest
AUC value of 0.86884. Some results on other datasets are similar to
CNN’s results.

From the shown experimental results, we notice that CNN, in
general, achieves better results than using Random Forest and Lin-
ear Regression. Binning approaches appear to be more efficient
to enhance significantly the performance with CNN and Linear
Regression.

The methods of EQW on the value range [min, max] of training
sets, EQF binning and scalers algorithms appear to be appropriate
methods for the prediction tasks of HIV and Crohn’s disease where
the values of features can be greater than 1. Comparing to the per-
formance of the original data (NA none NA), these methods can
give significant improvements.

4.2 Number of bins for Metagenomic binning

A comparison among the numbers of bins for binning EQW ap-
proach is presented in Figure 8. Average AUCs on each number
of bins applying to 8 considered datasets are calculated to compare.
The numbers bins of 5, 10 give average AUCs (on 8 datasets) of
0.8022450, 0.8011900, respectively while using 100 and 255 bins
reveal AUCs of 0.7621925, 0.7471600, respectively. The binary
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Figure 5: Different Methods Comparison using Random Forest. ”*” reflects significant differences compared to the best result on each dataset. ”X” reveals average
performance on 10-fold cross-validation repeated 5 times. Methods names denote The binning method combining Scaler and data range for binning. For example,
EQW Min Max scaler range min max denotes that we performed MinMax scaler and binning by EQW on the range of [Min,Max] of values in training set while

NA none NA means no binning method or scaler is applied. Black Dots exhibit outliers in results.

Figure 6: Different Methods Comparison using CNN. All symbols and stickers in the chart are the same as Figure 5.

bin approach reaches the average AUC of 0.7958750. As observed,
the numbers bins of 5 and 10 obtain significantly better results
compared to 100 and 255 bins. As shown from the average perfor-

mance on the all considered datasets, data discretization with 5 bins
achieves the best.

We see that CIR dataset obtains the best AUC value is 0.9522
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Figure 7: Different Methods Comparison using Linear Regression. All annotations in the chart are the same as Figure 5.

Figure 8: Performance of the various number of EQW bins using the CNN model. “*” reflects significant differences compared to the best result on each dataset. “X”
reveals average performance on 10-fold cross-validation repeated 5 times.

while IBD dataset achieves the AUC value of 0.88162 with 2 bins.
Additionally, The Crohn dataset reaches the best AUC of 0.77488
with 100 bins. Three datasets of COL, OBE and T2W reveal the best
AUC values with 5 bins with AUCs of 0.83670, 0.69594, 0.80238,
respectively. Otherwise, prediction tasks on the diseases of HIV and
T2D with 10 bins give the best results.

4.3 State-of-the-art comparison

To reflect the efficiency of binning approaches on metagenomic data,
we compare the proposed binning approaches to some state-of-the-
art including MetAML [18] and selbal [27].

In Table 2, we display the results using binning approaches of
EQW, EQF, SPB with a total of 5 bins and comparing state-of-the-
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Table 2: Results Comparison of robust binning methods (the number of bins is 5 for EQW, EQF and SPB) and state-of-the-art (Selbal on HIV, Crohn’s disease and MetAML
on other datasets) in average ACC and average AUC on 10-fold cross-validation repeated 5 times. The results formatted in bold text are better compared to the

state-of-the-art.

Datasets CIR COL Crohn HIV IBD OBE T2D T2W AVG
State-of-the-art val acc 0.877 0.805 NA NA 0.809 0.644 0.664 0.703 0.750

EQF CNN val acc 0.906 0.792 0.783 0.833 0.829 0.680 0.655 0.722 0.775
EQF RF val acc 0.887 0.808 0.813 0.816 0.810 0.657 0.675 0.720 0.773
EQW CNN val acc 0.883 0.785 0.739 0.827 0.851 0.668 0.667 0.707 0.766
EQW RF val acc 0.886 0.791 0.745 0.809 0.807 0.645 0.680 0.708 0.759
SPB CNN val acc 0.903 0.790 0.737 0.828 0.830 0.672 0.650 0.727 0.767
SPB RF val acc 0.883 0.785 0.739 0.827 0.851 0.668 0.667 0.707 0.766

State-of-the-art val auc 0.945 0.873 0.820 0.674 0.890 0.655 0.744 0.762 0.795
EQF CNN val auc 0.960 0.833 0.830 0.725 0.909 0.689 0.750 0.792 0.811
EQF RF val auc 0.956 0.866 0.868 0.703 0.872 0.682 0.754 0.781 0.810
EQW CNN val auc 0.952 0.837 0.775 0.718 0.881 0.696 0.757 0.802 0.802
EQW RF val auc 0.946 0.863 0.790 0.703 0.875 0.680 0.757 0.797 0.801
SPB CNN val auc 0.955 0.832 0.775 0.718 0.896 0.699 0.742 0.801 0.802
SPB RF val auc 0.952 0.837 0.775 0.718 0.881 0.696 0.757 0.802 0.802

art in average ACC and average AUC on 10-fold cross-validation
repeated 5 times. Three datasets including CIR, OBE and T2W all
had better results than state-of-the-art. COL disease has only better
ACC value when binning with EQF combined with Random Forest
model (ACC value is 0.868). In Crohn’s disease, when performing
the binning method with EQF combined with 2 models CNN (ACC
value is 0.830) and Random Forest (ACC value is 0.868) both give
better results than state-of-the-art. AUC values for HIV disease are
better than state-of-the-art in all models and methods, but there is
no ACC result in this disease higher than state-of-the-art. IBD has 5
good results when done with ACC values but only 2 good results
for AUC. T2D has most of the results better than state-of-the-art,
only when doing SPB method with CNN model (both ACC and
AUC values) and when binning with SPB, CNN model with ACC
measurements are lower than state-of-the-art.

5 Conclusion

In this study, we presented Met2Bin with various binning ap-
proaches using Equal with binning, Equal frequency binning,
Species bins and binary bins to reduce the effects of minor ob-
servation errors and to get rid of noise in the metagenomic data.
Scaler with QTF and logarithm transformation also show potential
improvements in the data type of reading counts. In most cases,
binning approaches and scaler algorithms can improve performance
for machine learning algorithms.

The binning and scaler approaches are examined on a vast of
datasets including different diseases and various data types (species
abundance and read counts at genus or family or order levels). We
can see that the proposed method can work on any value ranges.
This research only takes into account unsupervised binning methods.
Considerations on the labels of samples should be carried out in
further studies.

As revealed from the performance of disease prediction, we can
predict Liver cirrhosis, IBD with high accuracy while Obesity, HIV
and T2D diagnosis are still challenges. Further research should

investigate to improve those diseases.
In general, CNN produces better results than classic machine

learning. However, the considered CNN architecture in this work
is rather small and modest but its performance exhibits promising
results. Further investigations on the CNN architectures should be
considered to improve the performance. We also do not consider the
labels of samples when we build the breaks for data binning. In the
future, the research should consider and investigate the supervised
binning approaches to evaluate whether those can be efficient or not
on metagenomic data.

The binning methods are potential methods so that we can use
such bins for converting numeric data and showing them in 2D im-
ages. A bin which represents the magnitude of value can be shown
in the image with a specific colour. Binning techniques enable us to
visualize bio-markers in images as well as to leverage advancements
in deep learning algorithms for images to do prediction tasks.

The results and other materials of this work can be downloaded
from https://github.com/thnguyencit/met2bin.
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